Novel Approximation Estimators For Mixed Noise in Metrology

D. P. Jenkinson*, J. C. Mason*, A. Crampton* & M. G. Cox**, A. B. Forbes**, R. Boudjemaa**

*School of Computing and Engineering, University of Huddersfield, UK.

e-mail:

{d.p.jenkinson, j.c.mason, a.crampton}@hud.ac.uk.

**Centre for Mathematics and Scientific Computing, National Physical Laboratory, Teddington, UK.

e-mail:

{maurice.cox, alistair.forbes, redouane.boudjemaa}@npl.co.uk

Introduction

- A data contamination example concerns dust collections on the surface of a co-ordinate measuring machine (CMM). Data errors are a mixture of normally distributed errors and outliers.
- A least squares approximation may not be the most accurate form of approximation the l_2 norm is susceptible to outliers. A "mixed" norm (eg $\ell_2 + \ell_1$ or $\ell_2 + \ell_0$) may be better.
- A robust estimator can be applied to solve the problem as a nonlinear "transferred least squares" (TLS) which can reduce the outlier effects.

Aims of Research

- Applies an estimator to fit polynomial and radial basis function (RBF) approximations to data with predominantly l_2 noise, but where some outliers are present in the data.
- Extends the estimator

$$G = \frac{\epsilon}{(1 + \epsilon^2)^{\frac{1}{2}}},$$

suggested by Maurice Cox (NPL 1999 - private communication), where ϵ represents the error (residuals), to solve a "transferred least squares" (TLS) approximation problem.

The estimator treats small errors as themselves, but replaces large errors by constant values (eg 1 for G above).

Well Established Estimators: Huber

$$G(\epsilon) = \begin{cases} \epsilon^2, & \text{for } |\epsilon| \le c \\ 2c|\epsilon| - c^2, & \text{for } |\epsilon| > c \end{cases}$$

- 1) is continuously differentiable
- 2) $G \approx \epsilon^2$ for small ϵ , (ℓ_2) (parabola) $G \approx |\epsilon|$ for large ϵ , (ℓ_1) (straight line)

Further Work

Estimators currently under investigation are

1.
$$G = \tanh(c\epsilon)$$

$$2. G = \frac{\epsilon}{(1+c^2\epsilon^2)^{\frac{1}{2}}}$$

3.
$$G = \frac{2}{\pi} \arctan\left(\frac{\pi c \epsilon}{2}\right)$$

4.
$$G = 1 - \exp(-c|\epsilon|)$$

5.
$$G = \sqrt{(1 - \exp(-c^2 \epsilon^2))}$$

and work is continuing at both institutions.

All satisfy

 $G \approx \epsilon$ for small ϵ

 $G \approx constant$ for large ϵ .

General Forms of Approximation

1. Polynomial

$$F = \sum_{j=1}^{n} b_j x^{j-1}$$

or better

$$F = \sum_{j=1}^{n} b_j T_{j-1} (x)$$

where $T_j(x)$ is a Chebyshev polynomial of degree j given by $T_j(x) = \cos(j\theta)$ for $x = \cos(\theta)$.

2. Radial Basis Function (RBF)

$$F = \sum_{j=1}^{n} b_j \phi \left(\parallel \mathbf{x} - \lambda_j \parallel \right)$$

- b_j are the solution parameters.
- ϕ is a univariate basis function.
- $\{\lambda_j\}_{j=1}^n$ are a set of fixed centres.
- **x** is the input abscissa vector.

Norms

Approximation: $F \approx f$ at $x = x_i$

$$l_1: ||f - F||_1 = \sum |f(x_i) - F(x_i)| = \sum |\epsilon_i|$$

$$l_2: ||f - F||_2 = \sqrt{\sum [f(x_i) - F(x_i)]^2} = (\sum \epsilon_i^2)^{\frac{1}{2}}$$

$$l_{\infty}: \quad ||f - F||_{\infty} = \max |f(x_i) - F(x_i)| = \max |\epsilon_i|$$

Best (constant c) approximations to simple example data set:

Estimator
$$G(\epsilon) = \frac{\epsilon}{(1+\epsilon^2)^{\frac{1}{2}}}$$

$$s = \frac{(c-0)^2 9}{1 + (c-0)^2} + \frac{(c-1)^2 1}{1 + (c-1)^2}$$
$$= 9\left(1 - \frac{1}{1 + c^2}\right) + \left(1 - \frac{1}{1 + (c-1)^2}\right)$$

Taking the differential

$$M(c) = \frac{ds}{dc}$$

$$= \frac{9(2c)}{(1+c^2)^2} + \frac{2(c-1)}{(1+(c-1)^2)^2}$$

$$M(0) = -\frac{1}{2},$$

$$M(0.1) = \frac{1.8}{1.01^2} + \frac{2(-0.9)}{1.81^2} = 1.22 > 0.$$

Maximum (M = 0) lies between c = 0 and c = 0.1 at approximately c = 0.03.

So estimator is a compromise between l_1 and l_2 .

Least squares

Least squares approximations take the form

$$\min_{\mathbf{b}} \sum_{i=1}^{m} \epsilon_i^2 \left(\mathbf{b} \right)$$

where

- **b** is a vector of solution parameters $(b_1, b_2, \ldots, b_n)^T$
- ϵ is the approximation error (residual)

We extend least squares to include TLS by

$$\min_{\mathbf{b}} \sum_{i=1}^{m} \left[G\left(\epsilon\right) \right]^{2}.$$

Iteratively Weighted Least Squares

We wish to minimise the l_2 norm

$$\sum_{i=1}^{m} \left[G\left(\epsilon_{i}\right) \right]^{2}$$

where

$$G\left(\epsilon\right) = \frac{\epsilon}{\left(1 + c^{2} \epsilon^{2}\right)^{\frac{1}{2}}}$$

and $\epsilon = \mathbf{f} - \mathbf{F}$.

Iterating over k, taking $F^{(k)}$ to be the k th approximation to \mathbf{f} , we minimise at step k

$$\sum \left[\epsilon_i^{(k+1)} \left(\frac{G(\epsilon_i)^{(k)}}{\epsilon_i^{(k)}} \right) \right]^2. \quad (k = 0, 1, 2, \ldots)$$

Here $G(\epsilon)/\epsilon$ is $(1+c^2\epsilon^2)^{-\frac{1}{2}}$ and so the above is

$$\sum \left[\epsilon_i^{(k+1)} \left(1 + c^2 \epsilon_i^{(k)^2} \right)^{-\frac{1}{2}} \right]^2.$$

- Algorithm usually converges to a near-best l_2 approximation.
- A linear least squares problem at each step.

Method of Function Approximation

- The test functions are sampled at 40 equally spaced points in the interval [-2, 2].
- Six data sets containing 2, 4, 6, 8, 10 and 12 outliers are constructed.
- 10 RBF centres, located at the Chebyshev zeros in the interval [-2, 2], are chosen for all approximations.
- The cubic radial basis function is used in the approximating form F(x).
- The coefficients b_j , j = 1, 2, ..., 10, are calculated as a weighted least squares solution.
- The coefficients are then used to approximate at 100 points in [-2, 2] and the residual mean squares and the number of iterations taken to converge are compared.

Results: $f(x) = \exp(-2x^2)$

Alternative cubic	Number of Outliers		
estimator forms	8	10	12
cubic	0.50973	0.55179	0.63703
ϵ	-	-	-
$\frac{\epsilon}{\left(1+\epsilon^2\right)^{\frac{1}{2}}}$	0.03389	0.03625	0.04932
	6	6	10
$ anh\left(\epsilon ight)$	0.04572	0.04934	0.07018
	6	6	11
$1 - \exp(-\epsilon)$	0.02058	0.02139	0.02799
	8	8	13
$\sqrt{(1-\exp{(-\epsilon^2)})}$	0.02034	0.02136	0.03493
	10	10	18

Results:
$$f(x) = \frac{1}{1 + \exp(-2x)}$$

Alternative cubic	Number of Outliers		
estimator forms	8	10	12
cubic	0.52620	0.62948	0.68764
ϵ	-	-	-
$\frac{\epsilon}{\left(1+\epsilon^2\right)^{\frac{1}{2}}}$	0.04066	0.05584	0.06143
	7	9	8
$ anh\left(\epsilon ight)$	0.05614	0.07798	0.08556
	8	11	10
$1 - \exp(-\epsilon)$	0.02224	0.03199	0.03534
	9	12	11
$\sqrt{(1-\exp{(-\epsilon^2)})}$	0.02599	0.04525	0.05012
	12	17	16

Conclusions

- The estimators, solved as a weighted least squares problem, can all be shown to improve on a standard cubic approximation with outliers present in the data for the two test functions.
- The estimators $G = 1 \exp(-|\epsilon|)$ and $G = \sqrt{(1 \exp(-\epsilon^2))}$ are the most accurate forms of approximation for all levels of noise in the data sets.
- The estimator $G = \tanh(\epsilon)$ is the least accurate form of approximation for all levels of noise in the data sets.
- The estimator $G = \sqrt{(1 \exp(-\epsilon^2))}$ takes the greatest number of iterations to converge in all cases.
- The estimator $G = \frac{\epsilon}{(1+\epsilon^2)^{\frac{1}{2}}}$ takes the least number of iterations to converge in all cases.

Analysis Method for

$$G(\epsilon) = \epsilon (1 + c^2 \epsilon^2)^{-\frac{1}{2}}$$

- 1. A Chebyshev degree 4 polynomial using 101 data on [-1, 1].
- 2. A random curve is generated on this domain and the residual mean square (RMS) fit using TLS is calculated.
- 3. l_2 noise is added to the original data f by

$$f = f + 0.001 * randn(m, 1)$$

and outliers to every tenth f point as

$$f = f + 0.01 * randn(10, 1)$$

where rando are normally distributed.

- 4. Each calculation is repeated 300 times taking equally rising values of c.
- 5. The alternative c values are compared with the predicted c value $c = 1/3\sigma$.

Optimising c in $G(\epsilon) = \epsilon(1 + c^2 \epsilon^2)^{-\frac{1}{2}}$

To determine an optimum value for the parameter c, we again use repeated approximation.

300 equally spaced values ranging from $1/(10\sigma)$ to $1/\sigma$ are chosen for c. An approximation is constructed and the RMS evaluated for each c.

The graph below shows the RMS values plotted against the range of values for c when $\sigma = 0.001$.

A Robust Estimator? - Monte Carlo Simulation

Monte Carlo (Repeated Approximations) has been used to investigate the robustness of the estimator as follows.

- Construct initial uncorrupted data (x, y_0) .
- Choose an approximating form (e.g polynomial).
- Choose number of simulations (say k = 1000).
- \bullet for each k construct

$$y_k = y_0 + l_2$$
 noise + outliers

and solve $C\mathbf{a}^{(k)} = \mathbf{y}^{(k)}$

If the estimator is robust, the variation in the fitted parameters (for each simulation) will be small.

For a degree 4 Chebyshev approximation the mean variation in the 5 fitted parameters using 1000 simulations is found to be

New estimator 0.00023440

L S estimator 0.00594347