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Introduction

e A data contamination example concerns dust
collections on the surface of a co-ordinate
measuring machine (CMM). Data errors are a
mixture of normally distributed errors and

outliers.

A least squares approximation may not be the
most accurate form of approximation - the [s
norm is susceptible to outliers. A “mixed”

norm (eg £5 + £1 or 5 + £y) may be better.

A robust estimator can be applied to solve
the problem as a nonlinear “transferred least

squares” (TLS) which can reduce the outlier

effects.




Aims of Research

e Applies an estimator to fit polynomial and
radial basis function (RBF) approximations
to data with predominantly [5 noise, but
where some outliers are present in the data.

Extends the estimator

€

G = 19
(1+€2)2

suggested by Maurice Cox (NPL 1999 -
private communication), where € represents
the error (residuals), to solve a “transferred

least squares” (TLS) approximation problem.

The estimator treats small errors as
themselves, but replaces large errors by
constant values (eg 1 for G above).




Well Established Estimators: Huber

2cle| — 2, for

1) is continuously differentiable

2) G ~ €% for small ¢, (£3) (parabola)
G ~ |e| for large €, (£1) (straight line)




Further Work

Estimators currently under investigation are

. G = tanh (ce)

.G = .

(1—|—0262)%

. G = Zarctan (ﬁ)

T 2

. G =1—exp(—c|e])

. G = /(1 —exp(—c2e?))

and work is continuing at both institutions.

All satisfy
G =~ € for small €

G =~ constant for large e.




General Forms of Approximation

1. Polynomial

or better

F = ijTj_l (33)
71=1

where T} (z) is a Chebyshev polynomial of
degree j given by T (x) = cos (j0) for x =
cos ().

2. Radial Basis Function (RBF)

F=Y bigp(lx— )
j=1

e b; are the solution parameters.

e (¢ is a univariate basis function.
n

e {)\;}._ . are a set of fixed centres.
1=1

e x is the input abscissa vector.




Norms

Approximation: F = f atx = x;

s f = Fllo= 2 1f (@) = Fzg)| = 2 |eil

o |If = Fll2 = X[f (i) — F(:)]?

loo : || = Flloo = max [f(z:) — F(z:)| = max|e;

Best (constant ¢) approximations to simple

example data set:

1k

0.8

0.6 -

0.4

0.2

o

-0.2

L L L
-1 -0.8 -0.6 -0.4




Estimator G (¢) = ——
(1+¢)?

(c—0)°9 N (c—1)°1
1+ (c—0) 14 (c—1)°

9(1_1+162)+ <11+(cl—1)2>

Taking the differential

ds
de

9 (2c) N 2(c—1)
(1+¢)° (1 + (¢ — 1)2)2

1
5

1.8 2(=0.9)
1012 1812

M (0.1) = 1.22 > 0.

Maximum (M = 0) lies between ¢ = 0 and ¢ = 0.1
at approximately ¢ = 0.03.

So estimator is a compromise between [; and [s.




Estimator Representations

G values

G values




Estimator Representations

Huber M-Estimator

Estimator values

Estimator values




Least squares

Least squares approximations take the form

: 2
1min E_l e (b)
where

e b is a vector of solution parameters

(b1, ba, ..., bn)"

e ¢ is the approximation error (residual)

We extend least squares to include TLS by

mgn zzzl (G (e)]”.
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Iteratively Weighted Least Squares

We wish to minimise the [ norm

m

> G (e))

1=1

€

G (€) = -
(€) (1 + c2e2)2

and e =f — F.
Iterating over k, taking F(¥) to be the k th

approximation to f, we minimise at step k

N eI CAN
E € D . (k=0,1,2,...)
€;

-1
2

Here G () /e is (1 + c?€?)

.12
2\ ~ 3
Z [egkﬂ) (1 + C2€§k) ) ] :

e Algorithm usually converges to a near-best [

and so the above is

approximation.

e A linear least squares problem at each step.
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Test Function Representations

E=exp(-2x2)

f values

f values
o o
SN D

o
()
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Method of Function Approximation

The test functions are sampled at 40 equally
spaced points in the interval [-2, 2].

Six data sets containing 2, 4, 6, 8, 10 and 12

outliers are constructed.

10 RBF centres, located at the Chebyshev
zeros in the interval [-2, 2|, are chosen for all

approximations.

The cubic radial basis function is used in the

approximating form F(z).

The coefficients b;, 7 =1,2,...,10, are
calculated as a weighted least squares

solution.

The coefficients are then used to approximate
at 100 points in [-2, 2] and the residual mean
squares and the number of iterations taken to

converge are compared.
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Results:

f (z) = exp (—227)

Alternative cubic

Number of Outliers

estimator forms

8

10

12

cubic

0.50973

0.55179

0.63703

0.03389

6

0.03625

6

0.04932

10

0.04572
6

0.04934
6

0.07018
11

0.02058
8

0.02139
3

0.02799
13

0.02034
10

0.02136
10

0.03493
18
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Results:

flz) =

1

14-exp(—2x)

Alternative cubic

Number of Outliers

estimator forms

8

10

12

cubic

0.52620

0.62948

0.68764

0.04066

7

0.05584

9

0.06143

8

0.05614
8

0.07798
11

0.08556
10

0.02224
9

0.03199
12

0.03534
11

0.02599
12

0.04525
17

0.05012
16
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Conclusions

The estimators, solved as a weighted least
squares problem, can all be shown to improve
on a standard cubic approximation with
outliers present in the data for the two test

functions.

The estimators G = 1 — exp (—|€¢|) and
G = /(1 — exp (—€?)) are the most accurate
forms of approximation for all levels of noise

in the data sets.

The estimator G = tanh (¢) is the least
accurate form of approximation for all levels
of noise in the data sets.

The estimator G = /(1 — exp (—¢€?)) takes
the greatest number of iterations to converge

in all cases.

The estimator G = ¢ — takes the least
(1+€2)2
number of iterations to converge in all cases.
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Analysis Method for
Gle) = (1 + 2e?) 2

. A Chebyshev degree 4 polynomial using 101
data on [—1, 1].

. A random curve is generated on this domain
and the residual mean square (RMS) fit using
TLS is calculated.

. 1l noise is added to the original data f by
f = f+0.001 xrandn (m, 1)
and outliers to every tenth f point as
f=7f+0.01 xrandn (10, 1)
where randn are normally distributed.

. Each calculation is repeated 300 times taking

equally rising values of c.

. The alternative ¢ values are compared with
the predicted ¢ value ¢ = 1/30.
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Optimising ¢ in G(e) = €(1 + ?¢?)~

To determine an optimum value for the parameter

c, we again use repeated approximation.

300 equally spaced values ranging from 1/(100) to
1/0 are chosen for ¢. An approximation is
constructed and the RMS evaluated for each c.

The graph below shows the RMS values plotted
against the range of values for ¢ when o = 0.001.

Optimal parameter investigation
T T T T

1/(5 o)

1/(3 ©)

/

18



A Robust Estimator? - Monte Carlo Simulation

Monte Carlo (Repeated Approximations) has
been used to investigate the robustness of the
estimator as follows.

e Construct initial uncorrupted data (z, yo).
e Choose an approximating form (e.g polynomial).
e Choose number of simulations (say k& = 1000).
e for each k construct

Yr = Yo + l2 noise + outliers

and solve Ca(k) = y(¥)

If the estimator is robust, the variation in the
fitted parameters (for each simulation) will be

small.

For a degree 4 Chebyshev approximation the
mean variation in the 5 fitted parameters using
1000 simulations is found to be

New estimator 0.00023440
L S estimator 0.00594347
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